

Abstracts

Effects of Metal Thickness and Finite Substrate Width on Leaky Waves in Coupled Microstrip Lines

C.-C. Tien, C.-K.C. Tzuang and S.T. Peng. "Effects of Metal Thickness and Finite Substrate Width on Leaky Waves in Coupled Microstrip Lines." 1992 MTT-S International Microwave Symposium Digest 92.1 (1992 Vol. 1 [MWSYM]): 499-502.

The propagation characteristics of leaky waves in thick coupled microstrip lines integrated on substrate with infinite and finite widths are presented. The field-theoretic results, based on the full-wave mode-matching method incorporating the metal modes, show that the thickness of metal strips can convert a non-leaky bounded mode into a leaky wave. On the other hand, when the infinite substrate width is reduced to a finite value, a leaky wave may become a bounded propagation mode and additional leaky waves are found. The effects of metal thickness and finite substrate width on leaky waves are discussed.

[Return to main document.](#)